direct product, metabelian, soluble, monomial, A-group
Aliases: C23×F8, C26⋊1C7, C25⋊2C14, C24⋊(C2×C14), C23⋊(C22×C14), SmallGroup(448,1392)
Series: Derived ►Chief ►Lower central ►Upper central
C23 — C23×F8 |
Subgroups: 2969 in 463 conjugacy classes, 48 normal (6 characteristic)
C1, C2 [×7], C2 [×8], C22 [×7], C22 [×92], C7, C23 [×2], C23 [×199], C14 [×7], C24 [×7], C24 [×92], C2×C14 [×7], C25 [×7], C25 [×8], F8, C22×C14, C26, C2×F8 [×7], C22×F8 [×7], C23×F8
Quotients:
C1, C2 [×7], C22 [×7], C7, C23, C14 [×7], C2×C14 [×7], F8, C22×C14, C2×F8 [×7], C22×F8 [×7], C23×F8
Generators and relations
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=g7=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, de=ed, df=fd, gdg-1=fe=ef, geg-1=d, gfg-1=e >
(1 12)(2 13)(3 14)(4 8)(5 9)(6 10)(7 11)(15 44)(16 45)(17 46)(18 47)(19 48)(20 49)(21 43)(22 39)(23 40)(24 41)(25 42)(26 36)(27 37)(28 38)(29 54)(30 55)(31 56)(32 50)(33 51)(34 52)(35 53)
(1 22)(2 23)(3 24)(4 25)(5 26)(6 27)(7 28)(8 42)(9 36)(10 37)(11 38)(12 39)(13 40)(14 41)(15 35)(16 29)(17 30)(18 31)(19 32)(20 33)(21 34)(43 52)(44 53)(45 54)(46 55)(47 56)(48 50)(49 51)
(1 19)(2 20)(3 21)(4 15)(5 16)(6 17)(7 18)(8 44)(9 45)(10 46)(11 47)(12 48)(13 49)(14 43)(22 32)(23 33)(24 34)(25 35)(26 29)(27 30)(28 31)(36 54)(37 55)(38 56)(39 50)(40 51)(41 52)(42 53)
(1 19)(2 13)(3 34)(4 44)(5 54)(6 37)(7 28)(8 15)(9 29)(10 27)(11 38)(12 48)(14 52)(16 36)(17 55)(18 31)(20 49)(21 24)(22 32)(23 40)(25 53)(26 45)(30 46)(33 51)(35 42)(39 50)(41 43)(47 56)
(1 22)(2 20)(3 14)(4 35)(5 45)(6 55)(7 38)(8 53)(9 16)(10 30)(11 28)(12 39)(13 49)(15 25)(17 37)(18 56)(19 32)(21 43)(23 33)(24 41)(26 54)(27 46)(29 36)(31 47)(34 52)(40 51)(42 44)(48 50)
(1 39)(2 23)(3 21)(4 8)(5 29)(6 46)(7 56)(9 54)(10 17)(11 31)(12 22)(13 40)(14 43)(15 44)(16 26)(18 38)(19 50)(20 33)(24 34)(25 42)(27 55)(28 47)(30 37)(32 48)(35 53)(36 45)(41 52)(49 51)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
G:=sub<Sym(56)| (1,12)(2,13)(3,14)(4,8)(5,9)(6,10)(7,11)(15,44)(16,45)(17,46)(18,47)(19,48)(20,49)(21,43)(22,39)(23,40)(24,41)(25,42)(26,36)(27,37)(28,38)(29,54)(30,55)(31,56)(32,50)(33,51)(34,52)(35,53), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,42)(9,36)(10,37)(11,38)(12,39)(13,40)(14,41)(15,35)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(43,52)(44,53)(45,54)(46,55)(47,56)(48,50)(49,51), (1,19)(2,20)(3,21)(4,15)(5,16)(6,17)(7,18)(8,44)(9,45)(10,46)(11,47)(12,48)(13,49)(14,43)(22,32)(23,33)(24,34)(25,35)(26,29)(27,30)(28,31)(36,54)(37,55)(38,56)(39,50)(40,51)(41,52)(42,53), (1,19)(2,13)(3,34)(4,44)(5,54)(6,37)(7,28)(8,15)(9,29)(10,27)(11,38)(12,48)(14,52)(16,36)(17,55)(18,31)(20,49)(21,24)(22,32)(23,40)(25,53)(26,45)(30,46)(33,51)(35,42)(39,50)(41,43)(47,56), (1,22)(2,20)(3,14)(4,35)(5,45)(6,55)(7,38)(8,53)(9,16)(10,30)(11,28)(12,39)(13,49)(15,25)(17,37)(18,56)(19,32)(21,43)(23,33)(24,41)(26,54)(27,46)(29,36)(31,47)(34,52)(40,51)(42,44)(48,50), (1,39)(2,23)(3,21)(4,8)(5,29)(6,46)(7,56)(9,54)(10,17)(11,31)(12,22)(13,40)(14,43)(15,44)(16,26)(18,38)(19,50)(20,33)(24,34)(25,42)(27,55)(28,47)(30,37)(32,48)(35,53)(36,45)(41,52)(49,51), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)>;
G:=Group( (1,12)(2,13)(3,14)(4,8)(5,9)(6,10)(7,11)(15,44)(16,45)(17,46)(18,47)(19,48)(20,49)(21,43)(22,39)(23,40)(24,41)(25,42)(26,36)(27,37)(28,38)(29,54)(30,55)(31,56)(32,50)(33,51)(34,52)(35,53), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,42)(9,36)(10,37)(11,38)(12,39)(13,40)(14,41)(15,35)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(43,52)(44,53)(45,54)(46,55)(47,56)(48,50)(49,51), (1,19)(2,20)(3,21)(4,15)(5,16)(6,17)(7,18)(8,44)(9,45)(10,46)(11,47)(12,48)(13,49)(14,43)(22,32)(23,33)(24,34)(25,35)(26,29)(27,30)(28,31)(36,54)(37,55)(38,56)(39,50)(40,51)(41,52)(42,53), (1,19)(2,13)(3,34)(4,44)(5,54)(6,37)(7,28)(8,15)(9,29)(10,27)(11,38)(12,48)(14,52)(16,36)(17,55)(18,31)(20,49)(21,24)(22,32)(23,40)(25,53)(26,45)(30,46)(33,51)(35,42)(39,50)(41,43)(47,56), (1,22)(2,20)(3,14)(4,35)(5,45)(6,55)(7,38)(8,53)(9,16)(10,30)(11,28)(12,39)(13,49)(15,25)(17,37)(18,56)(19,32)(21,43)(23,33)(24,41)(26,54)(27,46)(29,36)(31,47)(34,52)(40,51)(42,44)(48,50), (1,39)(2,23)(3,21)(4,8)(5,29)(6,46)(7,56)(9,54)(10,17)(11,31)(12,22)(13,40)(14,43)(15,44)(16,26)(18,38)(19,50)(20,33)(24,34)(25,42)(27,55)(28,47)(30,37)(32,48)(35,53)(36,45)(41,52)(49,51), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56) );
G=PermutationGroup([(1,12),(2,13),(3,14),(4,8),(5,9),(6,10),(7,11),(15,44),(16,45),(17,46),(18,47),(19,48),(20,49),(21,43),(22,39),(23,40),(24,41),(25,42),(26,36),(27,37),(28,38),(29,54),(30,55),(31,56),(32,50),(33,51),(34,52),(35,53)], [(1,22),(2,23),(3,24),(4,25),(5,26),(6,27),(7,28),(8,42),(9,36),(10,37),(11,38),(12,39),(13,40),(14,41),(15,35),(16,29),(17,30),(18,31),(19,32),(20,33),(21,34),(43,52),(44,53),(45,54),(46,55),(47,56),(48,50),(49,51)], [(1,19),(2,20),(3,21),(4,15),(5,16),(6,17),(7,18),(8,44),(9,45),(10,46),(11,47),(12,48),(13,49),(14,43),(22,32),(23,33),(24,34),(25,35),(26,29),(27,30),(28,31),(36,54),(37,55),(38,56),(39,50),(40,51),(41,52),(42,53)], [(1,19),(2,13),(3,34),(4,44),(5,54),(6,37),(7,28),(8,15),(9,29),(10,27),(11,38),(12,48),(14,52),(16,36),(17,55),(18,31),(20,49),(21,24),(22,32),(23,40),(25,53),(26,45),(30,46),(33,51),(35,42),(39,50),(41,43),(47,56)], [(1,22),(2,20),(3,14),(4,35),(5,45),(6,55),(7,38),(8,53),(9,16),(10,30),(11,28),(12,39),(13,49),(15,25),(17,37),(18,56),(19,32),(21,43),(23,33),(24,41),(26,54),(27,46),(29,36),(31,47),(34,52),(40,51),(42,44),(48,50)], [(1,39),(2,23),(3,21),(4,8),(5,29),(6,46),(7,56),(9,54),(10,17),(11,31),(12,22),(13,40),(14,43),(15,44),(16,26),(18,38),(19,50),(20,33),(24,34),(25,42),(27,55),(28,47),(30,37),(32,48),(35,53),(36,45),(41,52),(49,51)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)])
Matrix representation ►G ⊆ GL9(ℤ)
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
G:=sub<GL(9,Integers())| [-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0] >;
64 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 7A | ··· | 7F | 14A | ··· | 14AP |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 7 | ··· | 7 | 14 | ··· | 14 |
size | 1 | 1 | ··· | 1 | 7 | ··· | 7 | 8 | ··· | 8 | 8 | ··· | 8 |
64 irreducible representations
dim | 1 | 1 | 1 | 1 | 7 | 7 |
type | + | + | + | + | ||
image | C1 | C2 | C7 | C14 | F8 | C2×F8 |
kernel | C23×F8 | C22×F8 | C26 | C25 | C23 | C22 |
# reps | 1 | 7 | 6 | 42 | 1 | 7 |
In GAP, Magma, Sage, TeX
C_2^3\times F_8
% in TeX
G:=Group("C2^3xF8");
// GroupNames label
G:=SmallGroup(448,1392);
// by ID
G=gap.SmallGroup(448,1392);
# by ID
G:=PCGroup([7,-2,-2,-2,-7,-2,2,2,515,1202,1742]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=g^7=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,g*d*g^-1=f*e=e*f,g*e*g^-1=d,g*f*g^-1=e>;
// generators/relations